(4) Seek OHEP support for e-cloud research on HCX

Art Molvik & HCX and NDCX Groups

the Heavy-Ion Fusion Science Virtual National Laboratory (HIFS-VNL)

February 22, 2007

This work performed under the auspices of the U.S Department of Energy by University of California, Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

Office of High Energy Physics (OHEP) support – two approaches

(A) ILC support, bolstered by being formal collaborator on CesrTA proposal

(B) Proposal to OHEP Advanced Technology R&D for halo studies

(A) Formal collaborator on CesrTA – proposed testbed for ILC-Damping Rings

- Visited Cornell, 1/31-2/2/07 with 2 other e-cloud experts
- Discussed possible diagnostics for quantitative e-cloud
 measurements Retarding field analyzer, grid-shielded electrode, and
 biased capacitively-coupled electrodes.
- Mark Palmer commented favorably on these suggestions during subsequent teleconference.

Funding will require a separate proposal from me, if CesrTA proposal funded. HCX support will require additional arguments.

(B) Proposal to OHEP Advanced Technology R&D for halo studies

- High brightness beams study group (Fall, 2006) identified halo formation as the highest priority issue: it is still not well understood or experimentally validated.
- Self-consistent simulation, e- & gas diagnostics, and mitigation techniques developed to an unprecedented level in our e-cloud work.
- These new capabilities could push halo understanding to a new level.
- Proposal deadline Oct. 1, 2007.

Funding seems probable if American Competitiveness Initiative implemented; Otherwise, fighting for share of tight money.

New capabilities for e-cloud & relevant to halo growth

- Reconstructed beam distributions
- Measured scaling of gas desorption coef. with ion angle & energy
- Measured & modeled scaling (ion angle & energy) of e- emission coef.
- Simulate transport of e- & gas and interactions with beam
- Multiple methods of increasing code speed by orders of magnitude –
 makes 3-D self-consistent simulations feasible.
- Developed diagnostics to measure details of e- & gas within beam
- Demonstrated aperturing of beam with positively bias aperture eemission controlled, but halo may increase:
 - Due to ion reflection, gas interaction, ...?
 - Mitigations: low-oxide metal, larger diameter to scrape less, closer to knife edge to reduce scattering, run hot, ...

Additional slides

- HCX aperture: clearing current grows in time
- NDCX aperture: large, constant current to EC2, very small current without aperture.
- GSI: some materials desorb much less gas than SS

Desorption varies with material

Mainly desorbed gases are H₂ and CO.

targets provided by

The Heavy Ion Fusion Science Virtual National Laborate

Despite E-Trap, aperture is the main source of electrons

4-STX Apertured 26-mA Beam

4-STX 43-mA Beam

Collected capacitive charge demonstrates dependence on electrode length

Magnetically connected to aperture – 40x current

6.33

85.97

Total Charge (nC)

HIFS e-cloud effort

HCX Experiment

Art Molvik

Michel Kireeff Covo

Frank Bieniosek

Peter Seidl

NDCX Experiment

Peter Seidl

Joshua Coleman

Prabir Roy

Frank Bieniosek

Art Molvik

Simulation

Jean-Luc Vay

Bill Sharp

Ron Cohen

Alex Friedman

Dave Grote

Steve Lund

1st measurement of absolute electron cloud density* – used retarding field analyzer (RFA) and clearing electrodes

- RFA measures max.
 expelled ion energy E_i
 (scan bias on successive pulses)
- $E_i = \phi_b$, max. beam potential
- Clearing electrode current:
 infer minimum n_e, and
 corroborate higher n_e

Absolute electron fraction can be inferred from RFA and clearing electrodes

Beam neutralization	B, C, & S on	B, C, off S on	B, C, S off
Clear. Electr. A	~ 7%	~ 25%	~ 89%
RFA	(~ 7%)	~ 27%	~ 79%

*Michel Kireeff Covo, Phys. Rev. Lett. 97, 054801 (2006).

Heavy-ion beams can be degraded by electron clouds

- \$\phi_b\$ depressed by electrons
- Compact phase-space essential to a small focal spot
- Ideal beam has minimum phase space

Artificially high electron density to exaggerate electron effects

 Electrons can distort phase space, greatly increasing area of focal spot.

x = horizontal location of ion

x' = dx/dz of ion (transverse/axial)

Ideal

×

We have begun experiments studying e-clouds in solenoid magnets

Electrodes installed in center of each solenoid and between solenoids to provide control of e-emission and trapping on outer magnetic field lines.

The Heavy Ion Fusion Science Virtual National Laboratory

E-cloud electrode bias affects apertured beam quality

New accelerators for WDM and HIF must push performance to cost ratio, and guarantee successful operation

- Electron and gas physics likely to determine operating limits, e.g.:
 - Maximum beam current
 - Compactness how close can beam tube approach beam?
 - Electron-ion instabilities (as seen in PSR)
- Devise mitigation techniques to increase limits
 - Clearing electrodes remove electrons
 - Roughened walls reduce electron and gas generation
 - Materials or coatings reduce electron and gas generation
 - Halo scraping by apertures reduces electron and gas generation

Control of accelerator beam-surface interactions is as important as control of MFE plasma-surface interactions

Charged particle beams transport efficiently with 'strong focusing', alternating gradient magnetic quadrupoles

Primary:

- Ionization of background or desorbed gas
- Ion-induced gas & electron emission from
 - expelled ions hitting vacuum wall
 - beam halo scraping

Secondary:

- secondary emission from electron-wall collisions

The High Current Experiment (HCX) is a small, flexible heavy-ion accelerator (at LBNL)

Diagnostics within magnetic quadrupole bores

FLL: 8-biased electrodes at ends of field lines: measure capacitive signal + electrons from wall

Capacitive and gridshielded electrodes

Outline

- I. Mostly experiment
 - 1. Introduction and experimental tools
 - 2. Beam-surface interactions
 - 3. Absolute measurements of gas and e-
 - 4. Plasma oscillations

Electronic gas desorption scales with (dE/dx)², like electronic sputtering

Conventional sputtering driven by large-angle nuclear scattering

Electronic sputtering more copious.

- Well known for ions onto thick insulating layers,
- Scales with (dE_e/dx)ⁿ
 where 1≤n≤3.

Electronic desorption, n ≈ 2.

Molvik, et al., PRL ~2/9/07

Developed model for ion-induced electron yield scaling with beam energy and angle of incidence*

Model electron yield (electrons/ion) versus

- ion energy
- angle of incidence

Reasonable agreement with our measurements

Not $1/\cos\theta$ at these lower ion energies

Modified Sternglass model** evaluated with TRIM code

$$\gamma_e \propto$$

$$\frac{\delta}{\cos(\theta)} \left(\frac{dE}{dx}\right)_e$$

* Michel Kireeff Covo, PRSTAB 9, 063201 (2006).

** E. J. Sternglass, Phys. Rev. 108, 1 (1957).

The Heavy Ion Fusion Science Virtual National Laboratory

We measure velocity distribution of desorbed gas

Observation: desorbed gas in beam emits light

 \bigvee

View expanding gas cloud from side – $f(v_0)$ normal to target [with gated camera]

Future – absolutely calibrate camera to determine desorption yield, apply technique to non-evaporable getter (NEG)

The Heavy Ion Fusion Science Virtual National Laboratory

Line integral of images indicates an expansion velocity of up to a few mm/ μ s

Estimated velocity:
Slope ~1 mm/µs

Corresponds to room temperature H₂, consistent with residual gas measurements

Time

Outline

- I. Mostly experiment
 - 1. Introduction and experimental tools
 - 2. Beam-surface interactions
 - 3. Absolute measurements of gas and e-
 - 4. Plasma oscillations
- II. Mostly theory and simulation

We measure electron sources – ionization

1. Ionization of gas by beam $(n_e/n_b \le 3\%)$

Beam current known; from expelled ion current infer

- Ionization rate
- Also, gas density in beam

We measure electron sources – walls

Electron emission beam tube $(n_e/n_b \le 7\%)$

3. Electron emission – end wall $(n_e/n_h, 0, 100\%)$

-30

Clearing electrode-c bias

6 kV

10

Outline

I. Mostly experiment

- 1. Introduction and experimental tools
- 2. Beam-surface interactions
- 3. Absolute measurements of gas and e-
- 4. Plasma oscillations
- II. Mostly theory and simulation

Electron oscillations – simulation & experiment agree

Summary – We have established a sound basis to understand and mitigate electrons and gas

- Increased understanding of beam-surface interactions
 - Electron emission measured and modeled, ∝ dE_e/dx
 - Discovered gas desorption $\sim (dE_e/dx)^2$
- Major electron sources measured:
 - Wall emission from beam-scrape-off dominates (~7%) +gas
 - End-wall emission suppressed to ~0% (if not suppr. ~80%)
 - Gas ionization small (~3%)
- Absolute measurement of e- accumulation as function of time
- Electrons bunch, generating oscillations
 - Simulation & experiment agree freq., wavelength, & amplitude
 - Experimental validation of simulations provides credibility

